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Abstract
In the “serial dependence” effect, responses to visual stimuli appear biased toward the last trial’s stimulus. However, several 
kinds of serial dependence exist, with some reflecting prior stimuli and others reflecting prior responses. One-factor analyses 
consider the prior stimulus alone or the prior response alone and can consider both variables only via separate analyses. We 
demonstrate that one-factor analyses are potentially misleading and can reach conclusions that are opposite from the truth if 
both dependencies exist. To address this limitation, we developed two-factor analyses (model comparison with hierarchical 
Bayesian modeling and an empirical “quadrant analysis”), which consider trial-by-trial combinations of prior response and 
prior stimulus. Two-factor analyses can tease apart the two dependencies if applied to a sufficiently large dataset. We applied 
these analyses to a new study and to four previously published studies. When applying a model that included the possibil-
ity of both dependencies, there was no evidence of attraction to the prior stimulus in any dataset, but there was evidence 
of attraction to the prior response in all datasets. Two of the datasets contained sufficient constraint to determine that both 
dependencies were needed to explain the results. For these datasets, the dependency on the prior stimulus was repulsive rather 
than attractive. Our results are consistent with the claim that both dependencies exist in most serial dependence studies (the 
two-dependence model was not ruled out for any dataset) and, furthermore, that the two dependencies work against each other.
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Recently encountered visual information alters percep-
tual decisions. Often, the alteration manifests as a repul-
sion from the prior stimulus, as in perceptual phenomena 
like the tilt aftereffect (Gibson & Radner, 1937; Webster, 
2015). More recently, the opposite pattern has been reported 
(Cicchini et al., 2014; Fischer & Whitney, 2014; Kiyonaga 
et al., 2017), in which the influence of the prior stimulus on 
current perceptual judgments appears to be attractive. That 
is, when participants are presented with a series of stimuli 
of the same type (e.g., gratings that differ in orientation 
across trials, Fig. 1, Left), responses to the current stimu-
lus appear biased toward the orientation of the stimulus on 

the immediately preceding trial (Fig. 1, Right). This attrac-
tive effect has been labeled “serial dependence” (Fischer 
& Whitney, 2014). Like repulsive aftereffects, attractive 
serial dependencies have been observed for a wide range 
of stimulus classes, including orientation, spatial location, 
motion direction, numerosity, timing, identity, gaze direc-
tion, ensemble statistics, attractiveness, and gender (Alais 
et al., 2018; Fischer et al., 2020; Fornaciai & Park, 2018b; 
Jepma et al., 2014; Liberman et al., 2014; Suárez-Pinilla 
et al., 2018; Taubert et al., 2016a, b; Xia et al., 2016), sug-
gesting that the effect reflects fundamental mechanisms of 
perception.

The attractive serial dependence effect has been explained 
as reflecting a “continuity field” (Fischer & Whitney, 2014), 
which promotes visual stability by biasing current perceptual 
representations toward the recent past through a (potentially 
weighted) averaging mechanism (Alais et al., 2018; Cic-
chini et al., 2018; Fischer & Whitney, 2014). However, it is 
unclear whether this attraction is towards the low-level visual 
properties of the prior stimulus or towards the higher-level 
percept of the prior stimulus (which manifests as attraction 
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towards the prior response, in the case of a perceptual error 
on the prior trial). Adjudicating between these two possibili-
ties is difficult because the response on the current trial can 
be influenced by many factors (see also Jepma et al., 2014; 
Jones et al., 2013) that sum together in a complicated mix-
ture to influence behavior. In addition, outside of the serial 
dependence literature, there is substantial evidence that a 
response on one trial can make participants more likely to 
make a similar response on the next trial (Annis et al., 2018; 
Jesteadt et al., 1977), an effect that we refer to as “response 
hysteresis” (Schwiedrzik et al., 2014). We use this term for 
any observed attraction to the prior response, while noting 
that it could arise from a variety of psychological mecha-
nisms, including changes in beliefs about the base rate of 
stimuli (Zhang et al., 2014; cf. Urai et al., 2019), systematic 
changes in how much evidence participants require for ini-
tiating responses (Wagenmakers et al., 2004), a tendency 
to repeat decisions without regard to the stimulus (Akaishi 
et al., 2014; Braun et al., 2018), or one interpretation of con-
tinuity field theory (in which the response simply provides 
an index of the participant’s higher-level percept). But what-
ever the source of response hysteresis, its existence poses a 
problem when drawing conclusions about serial dependence 
effects: If the response to the prior trial is accurate, then 
attraction to the prior stimulus and response hysteresis are 
confounded.

The conflation of attraction to the prior stimulus and 
response hysteresis is exacerbated by standard analysis prac-
tices, one-factor analyses that consider the prior stimulus 
alone or the prior response alone, or consider both factors 
but in separate analyses. In a standard one-factor analysis, 
the magnitude of dependence is determined by non-para-
metrically smoothing the errors or by fitting the derivative 
of a Gaussian function (Fig. 1, Right). The derivative is a 

convenient model since it has an amplitude parameter that 
corresponds to the maximum average error elicited by prior 
stimuli, which is taken as the magnitude of serial depend-
ence. We use this derivative function as a tool to highlight 
the kinds of biases in the current trial that would arise from 
the summation of two dependencies with opposite signs, 
one whose amplitude is positive (Fig. 2A, first column), and 
one whose amplitude is negative (Fig. 2A, second column). 
A typical one-factor analysis—plotting a dependence as a 
function of either the prior orientation or prior response 
separately—shows only a summation of these two latent 
influences, with the summation influenced by participants’ 
response variability (Fig. 2A, third column). For example, if 
the two forces mirrored each other perfectly and participants 
were relatively accurate, the latent influences would com-
bine to produce a flat line—an observed lack of dependence 
despite robust latent dependencies (Fig. 2A, bottom row).

The example in Fig. 2A, bottom row, demonstrates just 
how misleading one-factor analyses can be. In this example, 
a one factor-analysis based on the prior stimulus produces 
a null result. In addition, a one factor-analysis based on the 
prior response produces a null result. However, both conclu-
sions are incorrect. In reality, there is both an effect of the 
prior stimulus and the prior response. Thus, it is potentially 
misleading to use a one-factor analysis, and yet all prior 
studies in the serial dependence literature are based one-
factor analyses. Furthermore, the situation in Fig. 2A is not 
uncommon. To preview our results, of the five datasets that 
we analyzed, two of them produced seemingly null results 
for one-factor analyses based on only the prior stimulus or 
prior response and yet a two factor-analysis revealed this 
to be caused by offsetting dependencies. Furthermore, 
the results of all 5 datasets were consistent with offsetting 
dependencies.

Fig. 1  Left: Experiment 1 Schematic. On each trial, participants were 
presented with a grating stimulus and asked to report its orientation. 
Responses could begin when the stimulus appeared, but the stimulus 
was replaced by a mask after 200 ms. Stimuli are not to scale. ITI 
= intertrial interval. Right: Graphical Depiction of Serial Depend-
ence. Errors on the current trial are plotted as a function of the ori-
entation difference between the current trial and the prior trial. If the 

error is in the same rotational direction as the orientation difference 
(e.g., both Clockwise/CW or both Counterclockwise/CCW), this sug-
gests attraction, whereas if they are of opposite rotations, this sug-
gests repulsion, as indicated by the colored quadrants. The bias effect 
typically operates within a restricted range of differences between the 
current trial and the prior trial
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This problem is widely acknowledged, and several stud-
ies have sought to isolate separate dependencies experi-
mentally (Bae & Luck, 2020; Cicchini et al., 2017; Fischer 
& Whitney, 2014; Fornaciai & Park, 2019; Fritsche et al., 
2017; Pascucci et al., 2019b; Pascucci & Plomp, 2021; 
Suárez-Pinilla et al., 2018), but these studies often pro-
duce contradictory results. This might reflect a common 
challenge: the psychological operations that contribute 
to different sequential effects, like attraction to the prior 
stimulus or response hysteresis, are not easily manipulated 
independently. For example, one approach instructs par-
ticipants to withhold their responses on a subset of trials, 
asking whether the attraction persists on trials after which 
there was no response (Fischer & Whitney, 2014; Fornaciai 
& Park, 2019; Pascucci et al., 2019b; Pascucci & Plomp, 
2021). However, a lack of a motor response does not imply 
a lack of a perceptual decision (Pascucci et al., 2019b), and 
the prior decision may be sufficient to cause dependencies 
(Akaishi et al., 2014). To reduce the role of unrealized 
decisions, some studies instructed participants to ignore 
the stimulus (Pascucci et al., 2019b) or informed them that 
prior stimuli were irrelevant to the task (Fornaciai & Park, 

2018a), but this introduces a confound with attention, and 
the continuity field is believed to be sensitive to how well 
participants attend to the prior stimulus (Fischer et al., 
2020; Fischer & Whitney, 2014). To assess attention, some 
researchers have asked participants to report on a subset 
of the otherwise ignorable stimuli (Pascucci et al., 2019b; 
Pascucci & Plomp, 2021), but then it is difficult to guar-
antee that attentional checks do not reintroduce unrealized 
decisions. In summary, although it is straightforward to 
manipulate participants’ responses, it is more challenging 
to manipulate their decisions while also equating every 
aspect of perceptual processing.

Given the difficulties inherent to isolating dependencies 
experimentally, we explored whether dependencies could be 
isolated statistically. The standard serial dependence para-
digm, in which participants simply report the stimulus on 
each trial, may in some cases provide sufficient constraint 
to untangle the effect of the prior stimulus from the effect 
of the prior response, provided that (1) the analysis con-
siders combinations of prior response and prior stimulus 
(i.e., a two-factor analysis) and (2) there is sufficient trial-
by-trial variability in these combinations (e.g., participants’ 

Fig. 2  Analysis of serial dependence effects, showing a traditional 
one-factor analysis (A) and a two-factor analysis (B) that examines 
combinations of prior response and prior stimulus. A) Hypothetical 
results of a serial dependence experiment, in which the prior stimu-
lus induces two effects simultaneously. The first column shows an 
attractive dependence, the second a repulsive dependence, and these 
are summed to give the third column, the observed dependence. The 
repulsive effect differs across the rows, while the attractive effect is 
the same in all three rows. In each column, the x-axis of the analyzed 
dependence might reflect the relative stimulus of the prior trial or 
the relative response of the prior trial. However, the observed results 
would only be a simple sum of the two effects (third column) if both 
dependencies are of the same type (both prior stimulus, or both prior 
response) or in the special case that they are different (one prior stim-
ulus, one prior response) but accuracy is perfect, making them equiv-

alent. B) Predicted error for all combinations of prior stimulus and 
prior response. This two-factor analysis allows the identification of 
two dependencies when one is caused by prior stimulus and the other 
by prior response. The plots in (B) show all combinations of the prior 
response, drawn from the first column of (A), and prior stimulus, 
drawn from the second column of (A), with these two effects sum-
ming to produce a predicted error. When the prior trial is accurate, 
the combination corresponds to the predictions along the diagonal 
of the plots in (B), which is equivalent to the summation plots in the 
third column of (A). The colors indicate the sign and magnitude of 
the predicted error for the current trial. C) Predicted error for combi-
nations of prior response and stimulus, averaged to aid visualization. 
A typical experiment will not contain every possible combination of 
prior stimulus and response, but key information is retained by aver-
aging errors within quadrants. (Color figure online)
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accuracy varies across trials). In the hypothetical scenario 
of Fig. 2A, if one dependency (e.g., first or second column) 
is driven by the prior response and the other is driven by the 
prior stimulus (e.g., the other column), a one-factor analy-
sis of either the prior stimulus or prior response is one that 
collapses over the other factor. Rather than collapsing over 
one factor, errors can be assessed across all possible combi-
nations of prior stimulus and prior response (Fig. 2B) with 
an explicit model, or the model’s results can be compared 
with a model-free approach (e.g., averaging across combina-
tions of prior stimulus and response, as in Fig. 2C). These 
two-factor analyses can provide insight into cases where 
the one-factor approach fails. For instance, in the scenario 
where the two effects perfectly mirror each other (third row 
of Fig. 2), the trials for which the prior response is not per-
fectly accurate exhibit systematic errors in the current trial 
that can be used to identify the two sequential dependencies 
(Fig. 2B–C).

We developed a two-factor, statistical modeling approach 
that can identify two dependencies, where the combinations 
of prior stimulus and response arise from natural variations 
in trial-by-trial accuracy. The approach first uses model 
comparison to determine whether a dataset is constraining 
enough to identify multiple dependencies. If there is suffi-
cient constraint, the parameters of the model that is best sup-
ported by the data can be inspected to determine the direc-
tion of those dependencies. We applied this framework to a 
new experiment that collected considerably more data than 
a typical serial dependency study. We then applied the tech-
nique to previously published datasets (Fischer & Whitney, 
2014; Pascucci et al., 2019b; Samaha et al., 2019).

Methods

Experiment 1

As discussed above, disentangling stimulus and response 
effects requires variability between prior responses and prior 
stimuli. To gain the data needed to tease apart a depend-
ency on the prior stimulus from one arising from the prior 
response, we used a challenging orientation judgment task 
(i.e., performance was not perfectly accurate) with a high 
trial count (i.e., good statistical power in terms of combina-
tions of prior stimulus and prior response). The stimulus 
parameters and experimental procedure followed the design 
of Samaha et al. (2019). This task involved briefly presented 
stimuli corrupted by noise. As such, the results of this study 
may not generalize to all serial dependence tasks, in which 
the stimuli are uncorrupted by noise and participants are 
allowed to view the stimuli for extended durations. Hence, 
we additionally analyzed four published datasets that used a 
range of protocols (described below).

Participants

Power analyses indicated that approximately thirteen partici-
pants would be sufficient both to detect a single dependence 
and to reliably distinguish between one versus two depend-
encies (Appendix B). To allow for the possibility that data 
from some participants would be unusable, sixteen partic-
ipants were run, including author PS, with all except PS 
being awarded course credit. All participants had normal 
or corrected-to-normal vision, and all provided usable data. 
The procedure was approved by the University of Massachu-
setts Amherst Institutional Review Board.

Stimulus parameters

Stimuli were presented on an LCD monitor (ASUS 
VG248QE, 1,920 × 1,080 cm, 100 Hz refresh rate, 1,920 
× 1,080 resolution), viewed from approximately 60.96 cm. 
Stimuli were displayed using the Psychophysics Toolbox 
(Version 3.0.14; Brainard, 1997; Pelli, 1997) and custom 
MATLAB code (MathWorks, 2015).

Throughout the experiment, participants fixated on a light 
gray dot (0.08°). Grating stimuli (sine wave with 1.5 cycles 
per degree and phase 0 subtending a circular region of 2°) 
were presented on a medium gray background. Mask stimuli 
consisted of white noise rendered at 100% contrast. Partici-
pants were cued to make orientation reproduction responses 
with a circle (6° radius) and made the response by clicking a 
mouse near the circle (within 50 pixels of the circle).

The signal-to-noise ratio of the grating was reduced by 
averaging the grating with white noise (Samaha et al., 2016, 
2019). The contrast of the grating was determined by a pilot 
study (three participants, data not shown), in which white 
noise (100% contrast) was averaged with a grating stimulus 
presented at a range of contrast levels. The main experiment 
used a contrast (10%) that elicited responses that were within 
±25° of the true orientation approximately 80% of the time.

Procedure

The trial structure is illustrated in Fig. 1 (Left). Each trial 
began with the presentation of a grating, surrounded by a 
circle. To encourage fixation, a centrally presented dot was 
visible continuously. The grating was replaced by a mask 
after 200 ms, but participants could initiate responses 
immediately after target onset.1 The mask remained on the 

1 Although participants could initiate responses immediately, 
responses were rarely finalized before the mask appeared. Across 
participants, over 99% of response times were longer than 200 ms, 
meaning that the stimulus was no longer visible at the time when the 
response was made for over 99% of trials.
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screen until participants finished their response. A circle sur-
rounded the grating and mask, and participants responded 
by using a computer mouse to click on the circle. They were 
instructed to report the orientation of the grating stimulus 
by clicking a point on the circle such that an imagined line 
connecting the center of the grating (i.e., the fixation point) 
to the clicked point would be parallel to the stripes of the 
grating. They first practiced the task for 10 trials with an 
experimenter present and available to answer questions 
about the task. Participants could respond on either side 
of the circle. Trials were separated with a variable fixation 
period (randomly determined on each trial with a draw from 
a discrete uniform distribution ranging from 300–500 ms in 
steps of 20 ms).

The orientation on each trial was drawn at random from 
a discrete, uniform distribution, sampling integers between 
0–179°. Participants completed 15 blocks, each with 101 
trials, yielding 1,515 trials per participant, and 24,240 tri-
als in total. The median duration of the experiment was 48 
minutes (range: 34–86).

Published datasets

Four published datasets were reanalyzed (Fischer & Whitney, 
2014, Experiment 1b; Pascucci et al., 2019a, Experiments 1 
and 2; Samaha et al., 2019). See Table 1 for an overview of 
the methods. Note that, in the original publications, the data 
were preprocessed to a different extent than in our analyses. 
Preprocessing in the original studies included (A) exclud-
ing outlier responses (Pascucci et al., 2019b; Samaha et al., 
2019), (B) centering each participant’s errors to remove 
any overall clockwise or counterclockwise bias in that indi-
vidual (Pascucci et al., 2019b; Samaha et al., 2019), and/or 
(C) regressing out biases caused by the orientation on the 
current trial (Pascucci et al., 2019b), whereby participants 
respond less accurately for certain orientations, regardless 
of the stimuli or responses preceding those orientations (e.g., 
Jastrow, 1892; Wei & Stocker, 2015). Preprocessing steps 
(B) and (C) were built into our main analyses (model com-
parison, described below) by including regressors for these 
effects. Of note, any bias for particular orientations can cause 
a spurious dependence on the prior response, and so they 
must be considered when modeling response dependencies 
(Appendix A; Fritsche, 2016).

Analyses

All datasets were analyzed in three ways: (1) Different hier-
archical Bayesian models were fit to the data and compared 
with each other, assessing whether the data were sufficiently 
constraining to distinguish between effects of the prior 
orientation and prior response (a two-factor analysis); (2) 

standard one-factor serial dependence analyses (e.g., plot-
ting smoothed errors) based on the raw data (these plots will 
not necessarily match the previously published plots, which 
were based on pre-processed data); and (3) a nonparametric 
quadrant analysis (a two-factor analysis) that sorts trials into 
one of four quadrants depending on the relative direction 
of the prior stimulus and prior response. When reported, 
confidence intervals are across participants (Morey, 2008).

Bayesian analyses

Three hierarchical Bayesian models were fit to each dataset. 
The models allowed for one of the three combinations of 
effects of the prior orientation and prior response (i.e., two 
models with only one dependency and one model with both 
dependencies). All three models also included terms to cap-
ture rotational bias (i.e., a participant’s tendency to err in a 
clockwise or counterclockwise direction by a small amount 
on all trials) and biases towards particular salient angles. 
The latter was parameterized as either a bias towards the 
nearest cardinal angle (e.g., 0° or 90°), and thus a bias away 
from oblique angles, or a bias towards oblique angles (e.g., 
45°, 135°), and thus away from cardinal angles, with the 
latter possibility termed “the oblique effect” in the literature 
(Jastrow, 1892; Wei & Stocker, 2015). Here, we provide a 
brief description of the Bayesian models that were used to 
analyze the data. A more detailed description of the models, 
including how they handle preferences for oblique/cardinal 
angles, is given in Appendix A.

The models were additive, assuming that error on the cur-
rent trial reflected the summation of any dependencies from 
the prior trial along with biases that did not depend on the prior 
trial (i.e., rotational and periodic biases). One model included a 
dependence on the prior stimulus, a second included a depend-
ence on the prior response, and a third included both depend-
encies. Added together, the serial dependence biases and the 
cardinal/oblique/rotational biases determined the average 
error as a function of the current orientation and the stimulus/
response from the prior trial. Trial-by-trial variability in this 
average was modeled with a normal distribution.

Serial dependencies in orientation were modeled using 
the derivative of the density function for a circular normal 
distribution2. All models were estimated hierarchically, 
allowing for parameters to vary by participant while simul-
taneously allowing the participant-specific parameters to 
constrain each other via a “population-level” distribution 
(Kruschke, 2015, Chapter 8). The population-level distribu-
tion can be informally understood as an average across par-
ticipants—an estimate produced by analyzing participants 

2 A circular distribution was used to account for the circular nature 
of the stimuli; when the errors peak far enough away from 0, a typical 
Normal distribution would have a substantial discontinuity at ±90◦.
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separately and then summarizing those individual analy-
ses. Analyzing them hierarchically rather than separately 
accounts for individual differences while simultaneously 
pooling information across participants to gain greater 
reliability.

Models were constructed and fit using the Stan language 
(Carpenter et al., 2016), using its interface (RStan, 2.18.2) 
for the R computing language (R Core Team). Stan draws 
samples from an approximation of the posterior distribution 
using a modified version of the Hamiltonian Monte Carlo 
algorithm (Duane et al., 1987; Hoffman & Gelman, 2014). 
The validity of this approximation was assessed in two ways. 
First, chains were monitored for divergences, an indication 
that the numerical simulation methods in the algorithm are 
compromised (Betancourt, 2017). Second, the split-R̂ (“split 
r-hat”) for each parameter was calculated (Gelman & Rubin, 
1992). In all results, there were no divergences, and for each 
parameter, the split-R̂ was below 1.1 (Gelman et al., 2013, 
Chapter 14).

Model comparison was based on the models’ predic-
tive abilities with an approximation to a leave-one-out 
(LOO) cross-validation score (Vehtari et al., 2017, 2015). 
Specifically, models were compared based on their Pareto-
smoothed, importance sampling leave-one-out plus (PSIS-
LOO+) score, as calculated with the loo software package 
(Vehtari et al., 2020).

Median window

In addition to the two-factor Bayesian modeling, each 
dataset was also analyzed with a one-factor analysis (e.g., 

Fig. 2A), a median window based on either the prior stimu-
lus or response. The median error in the current trial for 
each participant was calculated using a sliding, median win-
dow, centered on 200 equally spaced orientation differences 
between −90° and 90° (width of ±12°, following Samaha 
et al., 2019). The smoothed error for orientation differences 
was calculated between both (1) the prior and current ori-
entations and (2) the response to the prior stimulus and the 
current orientation. To eliminate boundary artifacts, win-
dows near ±90° included circularly wrapped copies of the 
data (e.g., data from stimulus orientations of 78–89° were 
considered to be adjacent to an orientation of −90°). The 
across-participant distribution of median errors was then 
used to calculate confidence intervals.

Quadrant plots

The hierarchical Bayesian models make parametric assump-
tions about the functional form of the underlying serial 
dependencies (i.e., circular normal distributions) to increase 
statistical power. To check that the data show features con-
sistent with the conclusions from the model comparison, 
we also developed a nonparametric two-factor quadrant plot 
analysis that can be used to visualize the data in terms of 
separate dependencies. This was achieved by sorting each 
trial into one of the four categories for the combinations of 
whether the prior stimulus was clockwise or counterclock-
wise as compared with the current stimulus, and whether 
the prior response was clockwise or counterclockwise as 
compared with the current stimulus, as shown in Fig. 2C. 
For each of these four possible prior stimulus/response 

Table 1  Protocols for studies of serial dependence in orientation judgments

Eccentricity distance in degrees visual angle from fixation to the center of the stimuli; Contrast Percent Michelson; SF Spatial Frequency, cycles 
per degree; ITI Inter-trial Interval. All timing is reported in milliseconds
a In some experiments ‘Average ITI’ includes both the ITI and a period of cueing at the start of the target trial. In all experiments, the reported 
ITI does not include participants’ response time
b Contrast refers to Michelson contrast of gratings, which were convolved with white noise
c In the original experiment, this was listed as a control experiment for experiment 1. In experiment 1, the orientations on each trial were explic-
itly counterbalanced, whereas in 1b they were randomized
d The reported amplitude averages across two conditions. The conditions kept the signal-to-noise ratio of the stimuli equal, but halved the grating 
and noise contrasts
e This is an average across five conditions (600, 3450, 6300, 9150 and 12000). Authors observed that delay did not have a substantial effect

Study Experiment Inducer 
duration

Inducer 
eccentricity

Inducer-target 
position

Inducer 
contrast

Inducer SF Mask  
duration

Mask-to-
response 
delay

ITI 
 averagea

Trials

Current Study 1 200 0 Same 10b 1.5 0 0 400 24240
Fischer Whitney (2014) 1bc 500 6.5 Same 25 0.33 1000 250 2000 3296
Pascucci et al. (2019a) 1 400 8.5 Varied 50 0.5 400 500 500 5600
Pascucci et al. (2019b) 2 400 0 Same 50 1.2 400 500 500 4400
Samaha Switzky Postle 

(2019)
1 33 0 Same 8.5b,d 1.5 0 6300e 700 6000
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categories, current trial errors were averaged within par-
ticipants, and confidence intervals were calculated across 
the averages.

For the quadrant plots, if the prior stimulus is the only 
dependence, there should be a main effect of prior stimulus 
in the 2 × 2 grid of quadrants (as seen in Fig. 3A, repulsion 
from the prior stimulus results in a clockwise bias for the left 
column and a counterclockwise bias for the right column). 
If the prior response is the only dependence, there should 
be a main effect of prior response (as seen in Fig. 3B, attrac-
tion to the prior response results in a clockwise bias for the 
top row and a counterclockwise bias for the bottom row). If 
both dependencies exist, there should be an interaction. For 
instance, if the two dependencies are in opposite directions, 
the two “accurate” quadrants (upper-right and lower-left) 
will not display much of a bias because the dependencies 
counteract each other, whereas the two “inaccurate” quad-
rants (upper-left and lower-right) will show biases, with one 
clockwise and the other counterclockwise (see Fig. 3C). In 
contrast, if the two dependences are in the same direction, 
the two accurate quadrants will show a bias, with one clock-
wise and the other counterclockwise, while the two inac-
curate quadrants will not display much of a bias because the 

two dependencies counteract each other (see Fig. 3D). Thus, 
the quadrant analysis can display whether the data are con-
sistent with the presence of two serial dependencies that are 
either in opposition or in agreement (this is also true of the 
hierarchical Bayesian model, as seen in Appendix Fig. B2, 
which breaks down the power analysis according to whether 
the direction of the two dependencies is the same or oppo-
site, revealing equivalent statistical power in both cases).

We use the quadrant plot as a visual aid, rather than a 
statistical test, owing to a sampling bias that makes it unsuit-
able for inferential tests. This sampling bias results in the 
average magnitude of difference from the prior stimulus/
response being larger in the accurate quadrants compared 
with the inaccurate quadrants. For instance, the average 
extent to which the prior stimulus is clockwise from the cur-
rent stimulus (i.e., the right column) is likely to be greater 
for the upper-right accurate quadrant than for the lower-right 
inaccurate quadrant. This is because whenever the prior 
stimulus is very clockwise from the current stimulus (a point 
falling to the far right of the x-axis), the response to the prior 
stimulus is very likely to also be clockwise from the current 
stimulus (thus falling into the upper-right quadrant), whether 
the participant made a small or a large error: only extremely 

Fig. 3  A guide to interpreting quadrant plots, with examples of a dependence only on the prior stimulus A), a dependence only on the prior 
response B), or two dependencies that are in opposite directions C) or the same direction D). (Color figure online)
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large errors on the prior trial would cause the prior response 
to cross into the inaccurate (lower-right) quadrant. In con-
trast, whenever the prior stimulus is only slightly clockwise 
from the current stimulus (falling just to the right of zero 
on the x-axis), the response to the prior stimulus is much 
more likely to fall counterclockwise from the current stimu-
lus (thus falling into the lower-right quadrant): even a small 
error on the prior trial might cause the response to cross 
into the bottom-right quadrant. Thus, on average, data fall-
ing in the upper-right quadrant will be biased towards the 
right side of the quadrant and data falling in the lower-right 
quadrant will be biased towards the left (more central) side 
of the quadrant.). The critical point is that, if there is only 
one dependency, the main effect outcomes seen in Fig. 3A 
and B are unlikely, because of this sampling bias. To reach 
statistical conclusions about whether two dependencies exist 
versus one, or whether the dataset contains sufficient con-
straint to answer this question, we recommend the use of 
model comparison, followed by the use of quadrant plots as 
a check to see if the data generally support the conclusions 
reached with model comparison.

Results

Bayesian analysis

Bayesian models were applied to the trial-level data. Three 
models were fit that allowed for either (1) an effect of only the 
prior orientation, (2) an effect of only the prior response, or (3) 
an effect of both the prior orientation and the prior response. 
Models were compared by their PSIS-LOO+ score (Vehtari 
et al.,  2017, 2015), which estimates the model’s ability to 
accurately predict held-out data. This should adjust for the 
extra model flexibility inherent in the model with both depend-
encies. In Experiment 1 (Fig. 4), model comparison favored 
the model with both effects as compared with either of the 
single effect models (difference ± standard error: full model 
vs. stimulus only: −103.72 ± 16.04; full model vs. response 
only: −149.99 ± 19.61). Thus, Experiment 1 provided enough 
constraint to estimate two separate dependencies.

With five times more data than is typically collected in 
serial dependence studies (see Table 1), Experiment 1 had 
higher statistical power for dissociating the effect of the 
prior response from the effect of the prior stimulus (see also 
Supplementary Fig. C3, which shows that the magnitude of 
errors in Experiment 1 was comparable to the other datasets, 
suggesting that model comparison was reliable for Experi-
ment 1 primarily because of trial count). We next applied 
model comparison to four previously published datasets 
(Fig. 4). Across the datasets, only one other—Pascucci 
et al., Experiment 1—provided enough constraint to reli-
ably separate stimulus and response effects. That is, although 

one-factor analyses of the remaining three experiments sug-
gested dependencies (Appendix A, Appendix C), the model 
comparison did not allow a definitive conclusion as to 
whether there were dependencies on the previous stimulus, 
previous response, or both (i.e., at least two models tied for 
being the most predictive, Fig. 4).

To assess why the models could not be reliably distin-
guished in some cases, we performed a best-case scenario 
simulation study that assumed independence between prior 
responses and prior stimuli and eliminated individual differ-
ences and bias effects other than prior responses and prior 
stimuli. The models were fit to artificial datasets generated in 
this best-case scenario manner, with different datasets gen-
erated assuming either one or two dependencies (Appendix 
B). These simulations had two goals: first, to confirm that a 
comparison of Bayesian models could in principle determine 
whether a dataset contained one versus two dependencies, 
and, second, to estimate how many trials would be required 
for that determination to be reliable in this best-case situa-
tion. The simulations revealed that approximately 10,000 tri-
als are required to reliably distinguish between two effects 
(this trial count is not broken down by subject because this 
situation assumed no individual differences). At 5,000 trials, 
two components may be identified in only 75% of experi-
ments. Considering that none of the 4 previously published 
datasets contained more than 10,000 total trials (Table 1), it is 
unsurprising that model comparison failed to reach clear con-
clusions for three of them. In light of these results, we report 
here additional analyses of the two experiments that were able 
to separate stimulus and response dependencies, namely the 
present experiment, which contained more than 10,000 trials, 
and Experiment 1 of Pascucci et al. (for completeness, analy-
ses for all experiments are presented in Appendices A and C).

Before interpreting the results, we assessed whether the 
winning model adequately captured the data by comparing 
observed data to predicted data in terms of errors smoothed 
with a median window and plotted separately as a function 
of either the prior orientation or prior response (Fig. 5, left 
column for observed data and middle column for data gener-
ated from the model with both dependencies). Note that the 
model predictions exhibited “peripheral bumps” (Fritsche 
et al., 2017), whereby the dependence on the prior response 
appears to swap from attractive to repulsive at approxi-
mately ±45°. This occurred even though each derivative of 
a circular normal distribution function is either exclusively 
repulsive or exclusively attractive. In the simulated data-
sets, the peripheral bumps reflect the sum of two overlapping 
dependencies; the same effect is illustrated in the middle 
row of Fig. 2A.

Critically, the directions of the two dependencies in the 
models were unconstrained: both effects could be attrac-
tive, both could be repulsive, or one could be attractive and 
the other repulsive. Nevertheless, for both experiments that 
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Fig. 4  Model comparison (predictions for held out data) between a 
model with only the prior stimulus, only the prior response, or both 
dependencies. In all experiments, the model with both was either the 
most predictive model or tied for most predictive. The y-axis shows 
the relative expected log predictive density, estimated with PSIS-

LOO+ for each model, as compared with the most predictive model 
(i.e., the most predictive model is always 0, with error shown by the 
shaded rectangle). Error bars extend two standard errors of the mean 
of the difference. (Color figure online)

Fig. 5  Model results from the model with both dependencies. Model 
predictions (middle) can be compared with observed data (left), and 
each estimated dependency is shown in isolation (right), reveal-
ing that errors are attracted to the prior response and repelled from 
the prior stimulus. The two experiments for which model compari-
son could distinguish stimulus and response effects are in the dif-
ferent rows. Left: Preprocessed data were smoothed with a moving 
median window. Ribbons span the 95% confidence intervals, across 
participants. Middle: To check whether the model captured the data, 
the model with both dependencies was used to generate artificial 

datasets using parameters estimated from the real data. The gener-
ated datasets were preprocessed as in the left column. Ribbons span 
the 95% highest density interval across the preprocessed data. Right: 
The 95% highest density interval for the posteriors of the estimated 
dependencies. Unlike the median smoothing (left/middle column) 
that summates the dependencies, these plots show each dependency 
in isolation after removing the contribution of the other dependency 
and after removing any preferences for oblique or cardinal angles and 
any bias to rotate responses. PPD = Posterior Predictive Distribution. 
(Color figure online)
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provided sufficient constraint for disentangling stimulus and 
response effects, the results indicated an attraction to the 
prior response and repulsion from the prior stimulus (Fig. 5, 
right column). Furthermore, as seen in the third column of 
Appendix Fig. C4, the results from the other three datasets 
were consistent with the claim that repulsion from the prior 
stimulus and attraction to the prior response is a general 
property of serial dependence experiments. More specifi-
cally, when applying the model that contained both depend-
encies, none of the datasets produced results that were reli-
ably attractive to the prior stimulus (i.e., the 95% highest 
density interval for the prior stimulus effect was either inde-
terminate between attraction versus repulsion or decidedly 
favoring repulsion) and all datasets produced results that 
were reliably attractive to the prior response (i.e., the 95% 
highest density interval for the prior response effect was 
decidedly favoring attraction).

Quadrant plots

The Bayesian analyses suggest that the prior stimulus and 
prior response exerted opposite influences on errors, but this 
conclusion appears to contradict the moving window analysis, 
which does not show a clear repulsion from the prior stimulus 
nor an unequivocal attraction to the prior response (Fig. 5, left 
column). As discussed in relation to Fig. 2, this may reflect 
the limitations of a one-factor analysis such as the median 
window (Fig. 2A), whereby two opposing dependencies can 
counteract each other. We therefore sought to visualize the 
effects suggested by the Bayesian model with an alternative, 
non-Bayesian analysis that we refer to as a “quadrant plot”. 
Quadrant plots group together trials according to whether the 
prior trial was clockwise or counterclockwise relative to the 
current trial, both in terms of the prior stimulus and prior 
response (e.g., Fig. 2C and 3). The winning Bayesian model 
predicted, for both datasets, that the response and stimulus 
dependencies should counteract each other, specifically in the 
two diagonal quadrants (bottom left and top right), result-
ing in nearly unbiased responses. The model also predicted 
that the two dependencies should work in the same direction 
for the off-diagonal quadrants, resulting in large errors in the 
upper-left and lower-right quadrants, but with these errors of 
opposite direction in the two quadrants. This pattern of results 
is clearly seen for both experiments that offered sufficient con-
straint to separate the effects (Fig. 6; quadrant plots for the 
remaining experiments are provided in Appendix Fig. C2).

Discussion

Recent stimuli and recent responses influence perceptual 
decisions. For instance, in visual aftereffects, such as the tilt 
aftereffect, perception is repelled away from recently viewed 

stimuli. In contrast to visual aftereffects, the serial depend-
ence effect appears to show that perception is attracted 
towards recently viewed stimuli. However, this appearance 
may be misleading, considering that stimuli elicit a cascade 
of processes that range from detecting visual primitives to 
making perceptual decisions, with effects at one level poten-
tially counteracting effects at another level. We claim that 
analyses of serial dependence should assume dependencies 
on both the prior response and prior stimulus. To address 
this mixture of processes, we developed new analysis tech-
niques, ran a new experiment that collected enough data 
to reliably apply these techniques (five times more than is 
typically collected), and reanalyzed four previously pub-
lished serial dependence experiments. The results lead to 
two separate conclusions.

First, we draw the methodological conclusion that typical 
experimental procedures in the study of serial dependence 
can in theory tease apart these two sequential dependen-
cies, although in practice the amount of data required is 
substantially larger than is typically collected. When using 
a one-factor analysis (i.e., an analysis that considers the 
prior stimulus and collapses over the prior response, or vice 
versa), perfectly opposing dependencies and relatively low 
response accuracy can lead to mistaken conclusions (e.g., 
the last row of Fig. 2A suggests the absence of any effect). 
However, a two-factor analysis (i.e., an analysis that con-
siders combinations of prior stimulus and prior response) 
can identify both dependencies when there are a sufficient 
variety of combinations of the two variables (i.e., ample 
data on the “off-diagonal” in Fig. 2B; see also Figs. 3C 
and 6). For our analyses, we estimated that, at minimum, 
experiments should contain 10,000 total trials (Appendix 
B), substantially more than were collected in many serial 
dependence experiments (e.g., Table 1). This estimate rep-
resents a “best-case” scenario using simulated data, but the 
necessary total trial count, and the breakdown of that total 
into a certain number of subjects and trial count per subject, 
will depend on experiment-specific factors like the accuracy 
of responses, variability across participants, the magnitude 
of the individual effects, and the specific analysis method.

Our methodological conclusion regarding use of a two-
factor analysis is related to, but different than use of a two-
factor model (Pascucci et al., 2019b). Pascucci et al. com-
pared the performance of a one-factor model (attraction to 
the prior stimulus) versus a two-factor model that contained 
both a repulsion from the prior stimulus and an attraction to 
the prior response, with these factors summing up to pro-
duce a single response function. They applied both models 
to data, finding that the two-factor model provided a better 
explanation. For instance, the two-factor model explained an 
experiment in which repulsion from the prior stimulus was 
found when the prior stimulus was unreported, but attrac-
tion to the prior stimulus was found when the prior stimulus 
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was reported. However, this was a one-factor analysis that 
considered only the orientation of the prior stimulus rather 
than considering trial-by-trial combinations of prior stimulus 
and prior response. As shown in Fig. 2, a one-factor analysis 
can be misleading, and this is still true even if a two-factor 
model is fit to the one-factor analysis. For instance, the cur-
rent experiment produced a completely null result when 
using a one-factor analysis of prior stimulus. Application of 
the two-factor model to data collapsed over prior response 
would lead to a parameter identifiability problem because 
the results would be equally explained by setting both fac-
tors to zero, or by having two factors that perfectly counter-
acted each other. In contrast, as shown in the model results 
in Fig. 5 and the quadrant analysis in Fig. 6, when using a 
two-factor analysis, the apparently null result is revealed as 
two highly reliable factors that counteracted each other. In 
support of Pascucci et al.’s two-factor model, when we used 
a two-factor analysis, the two-factor model did significantly 
better than either one-factor model at explaining the data for 
two of the five datasets, and for the other three datasets, the 
two-factor model was either the best model or not reliably 
different than the best model (the latter cases occurred when 
the one-factor model with only prior response was the best 
model). In no case was there evidence against the two-factor 
model. Thus, we claim that typical serial dependence experi-
ments contain both a dependence on the prior stimulus and a 
dependence on the prior response (see also Moon & Kwon, 
2022). More importantly, we find that conclusions about the 
direction of any dependencies should be based on trial-by-
trial two-factor analyses.

Second, we conclude that when applied to data from 
the present experiment and from four previously published 
studies, our analysis failed to support the existence of an 

attractive effect towards the distal properties of the prior 
stimulus (as opposed to the percept of the stimulus, which 
may better align with the prior response). That is, by using 
analysis techniques that tease apart response and stimulus 
effects, we failed to find an attraction to the prior stimulus 
in any dataset. For two of the five experiments, stimulus and 
response effects were teased apart successfully, and for these 
two experiments, we found that the response effect was an 
attraction to the prior response whereas the stimulus effect 
was repulsion from the prior stimulus. In the remaining three 
experiments, no conclusion could be drawn about an effect 
of the previous stimulus. For all datasets, when applying a 
model with both dependencies, the response effect appeared 
to be attractive while the stimulus effect was either repulsive 
or indeterminate.

The existence of two dependencies may help explain con-
flicting results in the literature. As noted in the introduction, 
several studies have observed positive dependencies on the 
prior stimulus when participants withhold responses (Fis-
cher & Whitney, 2014; Fornaciai & Park, 2018a; Pascucci 
et al., 2019b). Other studies find repulsive effects even when 
responses are given (Bae & Luck, 2020). If there is only one 
kind of dependency, it is not clear from these studies why the 
dependency should be so changeable, including reversals in 
the direction of the dependency. However, all of these results 
used one-factor analysis techniques, which analyzed the data 
in terms of the prior stimulus or prior response while col-
lapsing over the other factor. In contrast, our results suggest 
that most experiments encourage two (or more) dependen-
cies, and that for a given experiment the balance may be 
tilted in favor of either attraction or repulsion within a one-
factor analysis, or even balanced to give the appearance 
of no dependence. If this conclusion is correct, care must 

Fig. 6  Errors differ across combinations of clockwise and counter-
clockwise prior stimulus and prior response in A) Experiment 1 and 
B) Pascucci et al. Experiment 1. Datapoints and colors in each quad-
rant correspond to the average error for the associated combination 

of clockwise/counterclockwise prior stimulus and prior response 
(compare with Fig. 2C). Inset numbers in each quadrant indicate how 
many trials fell into that quadrant. Error bars cover the 95% confi-
dence intervals. (Color figure online)
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be taken when interpreting changes in the magnitude of a 
dependence analyzed with a one-factor analysis. For exam-
ple, a manipulation that appears to reduce or even reverse 
an attraction effect as inferred with a one-factor analysis 
may in fact reflect a relatively subtle change in the balance 
of power between a robust attraction to the prior response 
that counteracts partially or wholly a robust repulsion from 
the prior stimulus. Unless a two-factor analysis is used, it is 
not clear whether the reduction in attraction effect reflects a 
reduction in the attractive dependency or an increase in the 
repulsive dependency.

There are two important caveats to our conclusions. First, 
the statistical modeling technique assumed that the magni-
tude of stimulus and response dependencies are constant 
across trials (the parameters of the circular normal distribu-
tion used to capture each kind of dependency were allowed 
to vary between participants but were assumed to be fixed 
for each participant across trials). This is likely a simplifica-
tion. For instance, perception of the prior stimulus is likely 
to vary across trials due to factors such as fluctuations in 
vigilance; in the extreme case, a participant may fail to look 
at the prior stimulus entirely, precluding any opportunity 
for dependence on that stimulus. By failing to acknowledge 
these fluctuations, the model likely underestimates the mag-
nitude of the stimulus dependence. Such underestimation 
could have contributed to the ambiguous effect of the pre-
vious stimulus in the three datasets for which model com-
parison resulted in a tie. However, when modeling data that 
allowed identification of two dependencies, the stimulus 
effect was repulsive rather than attractive, meaning that the 
only positive evidence we have for any effect of the previ-
ous stimulus is for a repulsive effect, in line with the classic 
tilt aftereffect. Although this limitation may have led to an 
underestimation of effect magnitude, it is unlikely that it 
resulted in mistakenly identifying the direction of the stimu-
lus dependence as negative when it was truly positive.

The second caveat is that our results, although support-
ive of an interpretation of the serial dependence effect as 
a mixture of two dependencies (Bae & Luck, 2020; For-
naciai & Park, 2019, 2020; Fritsche et al., 2017; Pascucci 
et al., 2019b), do not reveal the psychological processes that 
caused the two dependencies. Nor do they reveal whether the 
psychological mechanisms are distinct or shared, nor how 
they relate to the wider literature on sequential effects (Kiyo-
naga et al., 2017). When we were able to statistically isolate 
both dependencies, they resembled effects well-documented 
before the proposal of a continuity field: A repulsive visual 
aftereffect and an attractive response effect. We suspect that 
the repulsion from the prior orientation is a manifestation 
of the tilt-aftereffect, given that the effect is ubiquitous and 
automatic, it can occur after brief exposure to the inducer 
(e.g., under 10 ms; Sekuler & Littlejohn, 1974), does not 
require awareness of the inducer (Kanai et al., 2006), is 

sensitive to a range of low-level features (Greenlee & Mag-
nussen, 1987; Harris & Calvert, 1985, 1989; Morant & 
Mikaelian, 1960; Parker, 1972), can occur across different 
screen locations and spatial frequencies (Jacob et al., 2021; 
Morant & Mikaelian, 1960; Parker, 1972), and could arise 
from mechanisms that have been observed in single-cell 
recordings of early visual neurons (Clifford et al., 2000; Dra-
goi et al., 2000; Gutnisky & Dragoi, 2008; Patterson et al., 
2013; Wissig & Kohn, 2012). These prior results suggest 
that a repulsive tilt aftereffect is caused by merely viewing 
the inducing stimulus, and so there is every reason to expect 
that such perceptual aftereffects play some role in a typical 
serial dependence effect study.

We further suspect that the attraction to the prior response 
is mediated by a process that lies “further along” the path-
way than the early-stage processes implicated in the repul-
sive tilt aftereffect (e.g., the processes involved in making 
a perceptual decision). It remains possible that the process 
is perceptual, as implied by the continuity field; e.g., if par-
ticipants “saw” an orientation that was not presented and 
accurately reported that illusory orientation, then subsequent 
attraction toward the (inaccurate) perception of the inducer 
would manifest as an attraction to the prior response (see 
also Cicchini et al., 2017; Fischer & Whitney, 2014; St John-
Saaltink et al., 2016). This account of the attraction effect 
agrees with the characterization of serial dependence as a 
manifestation of perception enacting Bayesian inference 
(Cicchini et al., 2018; Kalm & Norris, 2018; van Bergen & 
Jehee, 2019). However, it is also possible that participants 
perceive the prior orientation accurately but respond inac-
curately, and in that case, the attraction could reflect their 
prior decision about the inducer (Akaishi et al., 2014; Braun 
et al., 2018). Indeed, multiple high-level processes have been 
proposed as accounts of response hysteresis, including shift-
ing beliefs about the base rate of stimuli (Zhang et al., 2014), 
slow changes in how much evidence participants require 
before initiating responses (Wagenmakers et al., 2004), or 
the integration of low-level sensory information into a deci-
sion (Pascucci et al., 2019b). Finally, it is possible that there 
are three (or more) effects, with an attraction to the prior 
response coexisting with both repulsion and attraction to the 
prior stimulus—our analyses cannot rule out this possibility.

Our development of techniques for untangling two 
dependencies based on prior responses and prior stimuli 
indicates that most studies are statistically underpowered 
to address this problem. Our power analysis indicated that 
more data are needed to separate these effects, which is 
why we ran a study with five times as many trials than are 
typically collected. As applied to our more powerful dataset, 
these techniques revealed the clear answer that both depend-
encies exist and work in opposite directions. As applied to 
previously collected datasets, which are underpowered for 
this question, the results were somewhat equivocal, but were 
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consistent with attraction to the prior response and repulsion 
from the prior stimulus. Our recommendation for the serial 
dependence literature is to run more highly powered studies 
that can tease apart the two dependencies based on natural 
variation across trials. Furthermore, in light of mounting 
evidence that both dependencies exist and evidence that the 
two dependencies can counteract each other, studies that 
seek to manipulate serial dependence should take a multi-
factor manipulation approach rather than manipulating only 
one experimental variable. Single factor manipulations 
may affect the two dependencies in opposite ways, the same 
way, or may affect just one of the two dependencies, with 
these various possibilities complicating interpretation of the 
results. By crossing a manipulation aimed at affecting one 
of the dependencies with a different manipulation aimed at 
affecting the other dependency, it may be possible to directly 
identify the two dependencies through manipulations. But 
in the absence of such multifactor manipulation studies, our 
analysis techniques could be used to measure the dependen-
cies, provided that the study collects enough data.

In sum, we suggest that studies of the serial dependence 
effect ought to be analyzed with two-factor analyses that 
consider combinations of prior stimulus and prior response. 
We developed two new techniques for doing so, with the 
first assessing the reliability of separate dependencies using 
model comparison, and the second producing a way of vis-
ualizing the separate dependencies in a quadrant plot. As 
applied to several datasets, these techniques failed to find 
evidence of an attraction toward the prior stimulus. Further-
more, when they were able to identify separate dependen-
cies, they revealed a repulsive stimulus effect and an attrac-
tive response effect. Now that we have successfully applied 
this two factor-modeling approach to the study of serial 
dependence effects in orientation tasks, a similar approach 
could be taken in addressing other kinds of serial depend-
ence paradigms that involve trial-by-trial presentations of 
stimuli that must be perceived and identified with continuous 
judgments (e.g., line length, approximate number judgments, 
auditory pitch, duration judgments, etc.).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13423- 023- 02320-3.
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