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Abstract

Subcortical volumes are a promising source of biomarkers and features in biosigna-

tures, and automated methods facilitate extracting them in large, phenotypically rich

datasets. However, while extensive research has verified that the automated

methods produce volumes that are similar to those generated by expert annotation;

the consistency of methods with each other is understudied. Using data from the UK

Biobank, we compare the estimates of subcortical volumes produced by two popular

software suites: FSL and FreeSurfer. Although most subcortical volumes exhibit good

to excellent consistency across the methods, the tools produce diverging estimates

of amygdalar volume. Through simulation, we show that this poor consistency can

lead to conflicting results, where one but not the other tool suggests statistical signif-

icance, or where both tools suggest a significant relationship but in opposite direc-

tions. Considering these issues, we discuss several ways in which care should be

taken when reporting on relationships involving amygdalar volume.
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1 | INTRODUCTION

Regional volumes of subcortex have been proposed as biomarkers for

several psychopathologies. For example, the volume of the amygdala

has been suggested as a biomarker for Alzheimer, depression symp-

tom severity in young adults, bipolar disorder in youth, migraine fre-

quency, chronic pain, and others (Daftary et al., 2019; Khatri &

Kwon, 2022; Liu et al., 2017; Pfeifer et al., 2008; Rogers et al., 2009;

Ruocco et al., 2012; Szeszko et al., 2004; Vachon-Presseau

et al., 2016). As a biomarker, subcortical volumes are advantageous

for being interpretable (given the rich literature linking these struc-

tures to many functions), explainable (hypotrophy and hypertrophy

are both easily described to healthcare providers and patients), and

readily available. The latter point comes from the fact that it is

possible to estimate the regional volumes from any structural image

with several automated algorithms.

For estimating regional subcortical volumes, two automated tech-

niques are popular: FMRIB's Integrated Registration and Segmenta-

tion Tool (FIRST) from the FMRIB Software Library (FSL) and

FreeSurfer's Automated Segmentation (ASEG) (Fischl, 2012;

Patenaude, 2007; Patenaude et al., 2011). Both techniques exhibit

high consistency with the gold standard of manual segmentation in

healthy adults and some clinical populations (Dewey et al., 2010;

Doring et al., 2011; Hsu et al., 2002; Lehmann et al., 2010; Morey

et al., 2009; Nugent et al., 2013; Pardoe et al., 2009; Tae et al., 2008;

Wenger et al., 2014), although there is variability across regions and

between methods. For segmenting the hippocampus, FreeSurfer has

been reported as having higher intraclass correlations than FSL
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(Doring et al., 2011), and neither method appears to have worse reli-

ability (across repeated scans) than manual segmentation (Mulder

et al., 2014). For the putamen, FSL has a higher Dice coefficient with

manual segmentation, and the methods perform similarly on the cau-

date (Perlaki et al., 2017). For the amygdala, which method performs

better depends on the metric (Morey et al., 2009). However, these

comparisons may not generalize to other populations (e.g., pediatric,

elderly), given that performance of the automated techniques is not

consistently high across populations (Schoemaker et al., 2016; Kim

et al., 2012; Sánchez-Benavides et al., 2010; Zhou et al., 2021). Both

tools may remain popular because their performance against a gold

standard depends on the research context, with different situations

favoring different tools.

Given that both tools are often reasonable choices for a given

study, and that the literature contains many reports that are based on

one but not the other, we sought to understand how the tools com-

pare with each other. To our knowledge, the two tools have only been

compared with each other by Perlaki et al. (2017). In their research,

the tools were consistent with each other (exhibiting intraclass corre-

lations that ranged from around 0.7–0.9), but the analyses included

only the putamen and caudate, and the sample size was relatively

small (N = 30). That is, it remains unclear how often the two tools

provide the same results and which factors affect these discrepancies.

We extend the results of Perlaki et al. (2017) to the remaining

subcortical structures using a much larger population (tens of thou-

sands). Our investigation should be considered in the context of

research that uses estimates of volume as a biomarker by, for exam-

ple, correlating it with a health-related outcome. Our primary concern

is whether the results of such a study are expected to depend on the

method used for automated segmentation.

2 | METHODS AND RESULTS

First, we looked at the consistency of subcortical volumes between

FSL and FreeSurfer using data from the UK Biobank (Alfaro-Almagro

et al., 2018). The data were downloaded Jan 2024 and contained

45,743 participants with usable anatomical data (Category 190: Free-

Surfer ASEG; Category 1102: FSL FIRST). Agreement and consistency

of the tools were measured using the single-measurement intraclass

correlation coefficient. For details on intraclass correlation calcula-

tions, see Appendix A1. Estimates and associated uncertainty are dis-

played using subscripts, as recommended by Louis and Zeger (2008).

For example, an estimate of 0.22 with a 95% confidence interval

spanning [0.21, 0.23] will be rendered as 0:210:220:23.

Across all structures, estimated agreement was lower than esti-

mated consistency (Table A1), reflecting differences in the average

volumes estimated by the two methods (Appendix A2). However, a

constant shift across participants would not affect many analyses tar-

geted by our primary concern, analyses related to estimated correla-

tions between regional volumes and some other measures. For that

reason, we focus not on agreement but instead on consistency.

Consistency varies by region (Figure 1, Table A1). To interpret the

intraclass correlations, consider the categories provided by Cicchetti

and Sparrow (1981): <0.4: poor, [0.4, 0.6): fair, [0.6, 0.75): good, [0.75,

1): excellent. Using those categories, the methods exhibit “good” to

“excellent” consistency for most regions. However, the consistency of

volumes for the amygdala is markedly worse than the others, being

around only 0:240:240:25 and 0:210:220:23 for the left and right hemi-

spheres (ranges of uncertainty span 95% confidence intervals). Com-

pare those values to the values for the hippocampus (Figure 1), which

has good consistency (left: 0:690:690:70, right: 0:700:700:71). For both

structures (i.e., the amygdala and hippocampus), consistency across

hemispheres as reported by FreeSurfer is the highest numerically

(Figure 1).

Although our focus is on the consistency between tools, we note

that their lack of agreement may lead researchers to make conclusions

about whether one hemisphere tends to have a larger amygdala than

the other. There is an interaction between method and hemisphere

(FSL–FreeSurfer: 0.22, p < .001), with FreeSurfer reporting that the

right amygdala is larger than the left (left–right: �0.19, p < .001) and

FSL reporting that the left is larger than the right (left–right: 0.04,

p < .001). As the effect side is almost zero in the latter, practically the

interaction is driven by the right side.

The amygdala has been described as particularly challenging to

segment; one small study (N = 23) reports a consistency of 0.6 for

volumes estimated by FSL across repeated scans of the same individ-

ual (Morey et al., 2010). Moreover, automated segmentation algo-

rithms can be affected by experimental factors like site, scanner,

participant positioning, and software version (Du et al., 2021; Hedges

et al., 2022; Liu et al., 2020; McGuire et al., 2017; Morey et al., 2010;

Mulder et al., 2014; Perlaki et al., 2017; Yang et al., 2016), and differ-

ential sensitivity to such factors could impact an intraclass correlation.

In the UKB, several potentially confounding factors were correlated

with estimates of amygdalar volume (Figure A2). However, regressing

these factors from the estimates of volume did not improve the con-

sistency between the methods (Appendix A4).

With poor consistency between measurements of the amygdala,

there is concern that reported relationships involving amygdala volumes

may depend on which method is used for estimating the volume, a

choice that may be considered arbitrary or lab-specific. At least two

kinds of issues could arise. First, lower consistency could make it more

likely that one but not both methods lead to significant correlations.

Second, lower consistency could make it more likely that the two

methods produce significant correlations that go in opposite directions.

To investigate how often these two issues could occur, we first

simulated experiments with artificial data. In each simulation, datasets

with two noisy estimates of volume and a third, outcome, variable

were generated such that the two-volume estimates had a pre-

specified intraclass correlation with each other (in expectation), and

the true volume had a given product–moment correlation with the

outcome variable. The estimated volumes were then tested for a

product–moment correlation with the outcome, and the process was

repeated for several intraclass correlations and sample sizes. In all sim-

ulations, the true product–moment correlation was set to a value that

is either typical for neuroimaging research (0.1, Marek et al., 2022),

small but non-zero (0.01), or large (0.2). For additional details on the

simulation methods, see Appendix A5.
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With lower consistency, the estimated product–moment corre-

lations were more often on opposite sides of a significance thresh-

old (Figure 2a, left column). For example, with consistency near the

value that was estimated for volumes of the amygdala in the

UKB (0.2), a typical effect size (0.1), and experiments with

50 participants, significance differed in around 94:995:095:1 percent

(a)

(b)

y = 0 + 1.04x

y = 1 + 0.79x y = 1.1 + 0.73x

y = 0.9 + 0.82x

y = –0.4 + 1.27x

y = 0.7 + 0.69x y = 1 + 0.45x

y = 1.1 + 0.48xy = 0.8 + 0.72x y = 0.2 + 1.01x

y = 1 + 0.83x y = –0.1 + 1.06x

F IGURE 1 Comparisons of subcortical volumes estimated by FSL and FreeSurfer for two example regions (a) hippocampus and (b) amygdala.
For the remaining subcortical regions, see Table A1. In the lower triangular panels, the line of equivalence is marked with a solid line, and the
dashed lines show the result of orthogonal regression. In the upper panel, the uncertainty estimates span 95% confidence intervals. The
histograms along the diagonal display volumes in the full sample.
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of simulations in which one test was significant (for simulations,

estimates indicate medians and ranges of uncertainty span 95%

equal-tailed intervals, see Appendix A5). With a sample size of

100, that percentage was only minimally different (to 93:793:9%94:0).

For a discussion on this insensitivity to sample size, see

Section Appendix A.6.

Lower consistency also coincided with a higher proportion of

experiments in which the two methods correlate in opposite direc-

tions (Figure 2a, right column). Considering the previous example

(an intraclass correlation of 0.2, an effect size of 0.1, and 50 partici-

pants per experiment), around 5:135:716:33 percent of experiments in

which both product–moment correlations were significant resulted

F IGURE 2 Effects of low measurement consistency. In the subfigures, the left column or panel shows the proportion of simulated
experiments where the methods produce correlations on opposite sides of an α¼0:05 significance threshold. The right column or panel shows
the proportion of simulated experiments where both measures are significantly correlated with an outcome but in opposite directions.
Proportions are shown with color (Swihart et al., 2010). (a) Simulations with artificial data. Rows (rho) indicate pre-specified product–moment
correlation with the outcome variable. ICC: Pre-specified intraclass correlation between measures of volume. (b) Simulations with UKB. Each row
corresponds to a non-image derived phenotype from the UKB. The value in parentheses is the absolute correlation of the variable with the
average volumes of the left amygdala (average across methods). For a display without color that includes estimates of uncertainty, see Figure A3.
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in the correlations having opposite signs. As the intraclass correlation

increased, the rates of this effect decreased rapidly.

To assess how often these two issues could occur in practice, we

repeated the above analyses but with the UKB. From the UKB,

we extracted the “Cognitive” variables using the FMRIB UKBiobank

Normalisation, Parsing and Cleaning Kit (McCarthy, 2023), restricting

analyses to variables with instance 2 and that exhibited one of the

largest (in absolute magnitude) 50 rank correlations (between the cog-

nitive variables and the average of the two estimates of the volume of

the left amygdala), and further to only those participants that had

values for all 50 of those variables (23,486 participants). Each simula-

tion resulted in a rank correlation between the two volume estimates

for the left amygdala and each of the 50 variables (results were com-

parable with the right amygdala). For additional details, see

Appendix A5.

Considering differing significance levels, the rates across experi-

ments using the UKB resembled the rates from experiments with arti-

ficial data. In simulated experiments with 50 UKB participants in

which at least one correlation was significant, one correlation was not

significant in between 90:790:891:0 and 95:195:295:3 percent of simula-

tions (the two estimates cover the 50 cognitive variables; Figure 2b,

left panel). Proportions were generally lower for variables that were

more strongly correlated with the measure of volume (for illustration,

compare the variables that are higher versus lower in the left panel of

Figure 2b).

Considering significant correlations with differing signs, the rates

across experiments with the UKB bracketed the rates with artificial

data. In experiments simulated with 50 UKB participants, the rates

ranged from 1:281:451:64 to 7:648:329:03. For most variables, increasing

the number of participants decreased the proportion of experiments

in which the two correlations exhibited opposite signs, but for some

the proportion increased. Across the 50 variables, 9 had a higher pro-

portion at N=100 than N=50, 2 of which had non-overlapping 95%

equal-tailed intervals (6348: duration to complete numeric path; 400:

time to complete round of pairs matching game; see also Figure A3).

3 | DISCUSSION

We examined the consistency of subcortical volumes within the UK

Biobank (Alfaro-Almagro et al., 2018), observing that two common

methods of estimating the volume of the amygdala, one from FSL and

one from FreeSurfer, have poor consistency with each other.

We speculate that the lack of consistency for the amygdala com-

pared with other subcortical structures is due in part to its relatively

small size. For larger structures, discrepancies in a few voxels would

have a smaller impact on consistency as compared with the impact of

the same discrepancy on a smaller structure. When considering the

difference in amygdala volume estimates between tools as a propor-

tion of their average (Figure A1b), a trend is revealed where smaller

structures tend to have more variable differences than larger ones.

The amygdala is the smallest structure analyzed and has the largest

variation. Even within other structures, the variability of the

proportional difference increases as the average size decreases. More-

over, there is a clear correlation between head size and difference in

amygdala volume (Figure A2), whereby smaller heads are associated

with larger differences. Hence, smaller structures may be more diffi-

cult to segment consistently due to the proportional impact of dis-

crepancies in the classification of a few voxels.

The main concern in this report is that consistency this poor can

lead to conflicting results. Two kinds of conflict were explored: the

methods producing correlations that are on opposite sides of signifi-

cance thresholds, and the methods producing volumes with significant

correlations that have differing signs. The prevalence of these occur-

rences was estimated with artificial data and data from the UKB.

Based on the observed rates, we make the following

recommendations.

3.1 | Recommendations

3.1.1 | When testing for new biomarkers, report
relationships with multiple automated methods
(e.g., both FSL and FreeSurfer)

Researchers may have idiosyncratic reasons for selecting a method,

particularly when the choice is viewed as arbitrary. If the choice

between methods is arbitrary, then reporting the outcome across

selections clarifies the fragility or robustness of a result (for a general

discussion, see Steegen et al., 2016). The choice may not always be

arbitrary, as there are metrics along which and study populations for

which one method may perform better (Huizinga et al., 2021; Morey

et al., 2009; Zhou et al., 2021). Note that one effect of low consis-

tency could be a downward bias on the magnitude of estimated corre-

lations (Appendix A7), and so there may be advantages to not only

reporting but also combining the estimates across methods when pre-

dicting health-related outcomes (e.g., by averaging, or including both

as independent variables in predictive models). Reporting estimates

from multiple reasonable tools will help move conclusions beyond

“there exists a correlation with the volume of the amygdala as esti-

mated by method M (version x)” to simply “there exists a correlation

with the volume of the amygdala.”

3.1.2 | When reviewing or conducting meta-
analyses of relationships with amygdala volume,
consider the method that was used to estimate volume

As mentioned in the Introduction, the amygdala has received substan-

tial attention due to being predictive of an array of health-related out-

comes. As presented in this report, the volume that is estimated by

one automated method may only weakly correspond to the volume

estimated by another, and so it may be misleading to conduct a meta-

analysis without accounting for the algorithms used by the individual

studies. In the UKB, there are differences in the strength of the corre-

lations between the measures of volume and the cognitive variables;
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in nearly all of the variables considered in this report, the magnitude

of the correlations involving FreeSurfer's method was numerically

larger (Figure A5). Larger correlations do not imply higher veracity, but

they further indicate that the methods track aspects of amygdalar

anatomy differently.

3.1.3 | When replicating or extending research on a
relationship that involves the volume of the amygdala,
use the method reported in the original publications

This recommendation follows standard practice for a replication

study. We highlight it here in consideration of both extension studies

that aim to apply a biomarker or biosignature that includes amygdala

volume (such as when testing a putative relationship in a new popula-

tion), and also in consideration of the ongoing evolution of methods

for automatically estimating subcortical volumes. Although FSL and

FreeSurfer are two of the most popular methods, others exist

(e.g., Akhondi-Asl & Warfield, 2013), including newer techniques

based on deep-learning approaches (e.g., Billot et al., 2023; for review,

see Singh & Singh, 2021). Newer methods may have better corre-

spondence with manual segmentation, warranting their use in replica-

tion or extension studies. But as this report shows, two methods can

perform well while exhibiting poor consistency with each other. So

when building on prior findings, it remains important to use the

methods of those prior findings, even when they are superseded.
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