The State of Motion

Sadil, Patrick¹; Ansari, Briha¹; Casamento-Moran, Agostina^{2,3}; Choe, Ann S.^{4,5}; Choi, Jungin¹; Farahani, Farzad V.⁶; Ismaila, Lukman E.^{4,5}; Kannan, Arunkumar⁷; Navarro, Cristian^{5,8}; Nebel, Mary Beth^{5,9}; Sair, Haris Iqbal^{4,10}; Smith, Bonnie¹; Stim, Joshua¹; Svingos, Adrian M^{11,12}; Lindquist, Martin A.¹

¹Johns Hopkins Bloomberg School of Public Health, Baltimore, MD ; ²Department Of Biomedical Engineering, Johns Hopkins School of Medicine; ³Kennedy Krieger Institute; ⁴Department of Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine ⁵Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute; ⁶Johnson & Johnson; ⁷Department of Electrical and Computer Engineering, Johns Hopkins Whiting School of Engineering; ⁸Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute; ⁹Department of Neurology, Johns Hopkins School of Medicine; ¹⁰The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University; ¹¹Brain Injury Clinical Research Center, Kennedy Krieger Institute; ¹²Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine

How Much do Participants Move?

ABCD (N: 7929)

Participant motion
remains problematic

Introduction

- Failing to account for motion-induced artifacts drastically increases likelihood of biased conclusions
- Mitigation possible,

- but a need exists to exclude participants
- In some datasets, rates of participant exclusion can be substantial (e.g., 40-60%)

• <u>Aims:</u>

- Quantify motion in several large datasets
- Measure stability of motion across time
- Assess rates of exclusion due to motion

Rates of Exclusion

Summary

- Many datasets exhibit substantial motion coincident with task design
- Degree of motion exhibits stability
 - Relationships with age and BMI apparent (with substantial dataset effects)

Avg. Framewise Displacement Threshold

sex – F – M BMI – Underweight – Normal – Overweight – Obese

Lenient: (avg<0.55mm); *Strict*: (avg<0.25mm) or max<5mm or %censored<0.2mm)

- When applying common thresholds, rates of exclusion are substantial in most datasets
 - Thresholds may warrant updates given modern denoising techniques

References

- Alfaro-Almagro, F., ... & Smith, S. M. (2018). Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. *Neuroimage, 166*, 400-424.
- Barch, D. M., ... & Van Essen, D. C. (2013). Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage, 80, 169-189.
- Casey, B. J., ... & Dale, A. M. (2018). The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. *Developmental cognitive neuroscience*, 32, 43-54.
- Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced brain state manipulation improves prediction of individual traits. Nature communications, 9(1), 2807.
- Harms, M. P., ... & Yacoub, E. (2018). Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. *Neuroimage*, 183, 972-984.
- Jung, H., ... & Wager, T. D. (2024). A multimodal fMRI dataset unifying naturalistic processes with a rich array of experimental tasks. *Scientific Data*, 2024-06.
- Marek, S., ... & Dosenbach, Nico U. F (2022). Reproducible brain-wide association studies require thousands of individuals. *Nature*, 603(7902), 654–660