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Abstract

Subcortical volumes are a promising source of biomarkers and features in biosignatures,
and automated methods facilitate extracting them in large, phenotypically rich datasets.
However, while extensive research has verified that the automated methods produce
volumes that are similar to those generated by expert annotation, the consistency of
methods with each other is understudied. Using data from the UK Biobank, we compare
the estimates of subcortical volumes produced by two popular software suites: FSL and
FreeSurfer. Although most subcortical volumes exhibit good to excellent consistency
across the methods, the tools produce diverging estimates of amygdalar volume. Through
simulation, we show that this poor consistency can lead to conflicting results, where one
but not the other tool suggests statistical significance, or where both tools suggest a
significant relationship but in opposite directions. Considering these issues, we discuss
several ways in which care should be taken when reporting on relationships involving
amygdalar volume.
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1. Introduction

Regional volumes of subcortex have been proposed as biomarkers for several psy-
chopathologies. For example, the volume of the amygdala has been suggested as a
biomarker for Alzheimer’s, depression symptom severity in young adults, bipolar dis-
order in youth, migraine frequency, chronic pain, and others (Daftary et al., 2019; Kha-
tri and Kwon, 2022; Pfeifer et al., 2008; Liu et al., 2017; Vachon-Presseau et al., 2016;
Rogers et al., 2009; Ruocco et al., 2012; Szeszko et al., 2004). As a biomarker, subcor-
tical volumes are advantageous for being interpretable (given the rich literature linking
these structures to many functions), explainable (hypotrophy and hypertrophy are both
easily described to healthcare providers and patients), and readily available. The latter
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point comes from the fact that it is possible to estimate the regional volumes from any
structural image with several automated algorithms.

For estimating regional subcortical volumes, two automated techniques are popular:
FMRIB’s Integrated Registration and Segmentation Tool (FIRST) from the FMRIB
Software Library (FSL) and FreeSurfer’s Automated Segmentation (ASEG) (Patenaude,
2007; Patenaude et al., 2011; Fischl, 2012). Both techniques exhibit high consistency with
the gold-standard of manual segmentation in healthy adults and some clinical populations
(Hsu et al., 2002; Tae et al., 2008; Morey et al., 2009; Pardoe et al., 2009; Dewey et al.,
2010; Lehmann et al., 2010; Doring et al., 2011; Nugent et al., 2013; Wenger et al., 2014),
although there is variability across regions and between methods. For segmenting the
hippocampus, FreeSurfer has been reported as having higher intraclass correlations than
FSL (Doring et al., 2011), and neither method appears to have worse reliability (across
repeated scans) than manual segmentation (Mulder et al., 2014). For the putamen,
FSL has a higher Dice coefficient with manual segmentation, and the methods perform
similarly on the caudate (Perlaki et al., 2017). For the amygdala, which method performs
better depends on the metric (Morey et al., 2009). However, these comparisons may not
generalize to other populations (e.g., pediatric, elderly), given that performance of the
automated techniques is not consistently high across populations (Schoemaker et al.,
2016; Kim et al., 2012; Sánchez-Benavides et al., 2010; Zhou et al., 2021).

While comparisons to manual segmentation could identify which method produces the
best estimates of volume, it remains less clear how the two methods compare to each
other. To our knowledge, the two methods have only been compared to each other by
Perlaki et al. (2017). In their research, the methods were consistent with each other
(exhibiting intraclass correlations that ranged from around 0.7 - 0.9), but the analyses
included only the putamen and caudate, and the sample size was relatively small (N=30).
We extend the results of Perlaki et al. (2017) to the remaining structures and with a much
larger population (tens of thousands). Our investigation should be considered in the
context of research that would use estimates of volume as a biomarker by, for example,
correlating volume with a health-related outcome. Our primary concern is whether the
results of such a study could be expected to depend on the method used for automated
segmentation.

2. Methods and Results

First, we looked at the consistency of subcortical volumes between FSL and FreeSurfer
using data from the UK Biobank (Alfaro-Almagro et al., 2018). The data were down-
loaded Jan 2024 and contained 45743 participants with usable anatomical data (Category
190: FreeSurfer ASEG; Category 1102: FSL FIRST). For details on intraclass correlation
calculations, see Appendix A.1. Estimates and associated uncertainty are displayed us-
ing subscripts, as recommended by Louis and Zeger (2008). For example, an estimate of
0.22 with a 95% confidence interval spanning [0.21, 0.23] will be rendered as 0.210.220.23.

Across all structures, estimated agreement was lower than estimated consistency (Ta-
ble A1), reflecting differences in the average volumes estimated by the two methods
(Appendix A.2). However, a constant shift across participants would not affect many
analyses targeted by our primary concern, analyses related to estimated correlations
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Figure 1: Comparisons of Subcortical Volumes Estimated by FSL and FreeSurfer for two example regions
a) Hippocampus and b) Amygdala. For remaining subcortical regions, see Table A1. In the lower
triangular panels, the line of equivalence is marked with a solid line, and the dashed lines show the result
of orthogonal regression. In the upper panel, the uncertainty estimates span 95% confidence intervals.
The histograms along the diagonal display volumes in the full sample.
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between regional volumes and some other measure. For that reason, we focus not on
agreement but instead on consistency.

Consistency varies by region (Figure 1, Table A1). To interpret the intraclass correla-
tions, consider the categories provided by Cicchetti and Sparrow (1981): <0.4: poor, [0.4,
0.6): fair, [0.6, 0.75): good, [0.75, 1): excellent. Using those categories, the methods ex-
hibit “good” to “excellent” consistency for most regions. However, the consistency of vol-
umes for the amygdala is markedly worse than the others, being around only 0.240.240.25
and 0.210.220.23 for the left and right hemispheres (ranges of uncertainty span 95% con-
fidence intervals). Compare those values to the values for the hippocampus (Figure 1),
which has good consistency (left: 0.690.690.70, right: 0.700.700.71). For both structures
(that is, the amygdala and hippocampus), consistency across hemispheres as reported by
FreeSurfer is the highest numerically (Figure 1). For the amygdala, there is a two-way
interaction between method and hemisphere (FSL - FreeSurfer: 0.22, 𝑝 < 0.001), with
FreeSurfer reporting that the right amygdala is larger than the left (left - right: -0.19,
𝑝 < 0.001) and FSL reporting that the left is larger than the right (left - right: 0.04,
𝑝 < 0.001).

The amygdala has been described as particularly challenging to segment; one small
study (N=23) reports a consistency of 0.6 for volumes estimated by FSL across repeated
scans of the same individual (Morey et al., 2010). Moreover, automated segmentation
algorithms can be affected by experimental factors like site, scanner, participant posi-
tioning, and software version (Hedges et al., 2022; Du et al., 2021; McGuire et al., 2017;
Yang et al., 2016; Liu et al., 2020; Mulder et al., 2014; Morey et al., 2010; Perlaki et al.,
2017), and differential sensitivity to such factors could impact an intraclass correlation.
In the UKB, several potentially confounding factors were correlated with estimates of
amygdalar volume (Figure A2). However, regressing these factors from the estimates of
volume did not improve the consistency between the methods (Appendix A.4).

With poor consistency between measurements of the amygdala, there is concern that
reported relationships involving amygdala volumes may depend on which method is used
for estimating the volume, a choice that may be considered arbitrary or lab-specific. At
least two kinds of issues could arise. First, lower consistency could make it more likely
that one but not both methods leads to significant correlations. Second, lower consistency
could make it more likely that the two methods produce significant correlations that go
in opposite directions.

To investigate how often these two issues could occur, we first simulated experiments
with artificial data. In each simulation, datasets with two noisy estimates of volume and
a third, outcome, variable were generated such that the two volume estimates had a pre-
specified intraclass correlation with each other (in expectation), and the true volume had
a given product-moment correlation with the outcome variable. The estimated volumes
were then tested for a product-moment correlation with the outcome, and the process
was repeated for several intraclass correlations and sample sizes. In all simulations, the
true product-moment correlation was set to a value that is either typical for neuroimaging
research (0.1, Marek et al., 2022), small but non-zero (0.01), or large (0.2). For additional
details on the simulation methods, see Appendix A.5.

With lower consistency, the estimated product-moment correlations were more often
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Figure 2: Effects of Low Measurement Consistency. In the subfigures, the left column or panel shows
the proportion of simulated experiments where the methods produce correlations on opposite sides of
an 𝛼 = 0.05 significance threshold. The right column or panel shows the proportion of simulated
experiments where both measures are significantly correlated with an outcome but in opposite directions.
Proportions are shown with color (Swihart et al., 2010). a) Simulations with Artificial Data. Rows
(rho) indicate pre-specified product-moment correlation with the outcome variable. ICC: pre-specified
intraclass correlation between measures of volume. b) Simulations with UKB. Each row corresponds to a
non-image derived phenotype from the UKB. The value in parentheses is the absolute correlation of the
variable with the average volumes of the left amygdala (average across methods). For a display without
color that includes estimates of uncertainty, see Figure A3.
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on opposite sides of a significance threshold (Figure 2̃a, left column). For example,
with consistency near the value that was estimated for volumes of the amygdala in the
UKB (0.2), a typical effect size (0.1), and experiments with 50 participants, significance
differed in around 94.995.095.1 percent of simulations in which one test was significant
(for simulations, estimates indicate medians and ranges of uncertainty span 95% equal-
tailed intervals, see Appendix A.5). With a sample size of 100, that percentage was only
minimally different (to 93.793.9%94.0). For a discussion on this insensitivity to sample
size, see Section Appendix A.6.

Lower consistency also coincided with a higher proportion of experiments in which
the two methods correlate in opposite directions (Figure 2̃a, right column). Consider-
ing the previous example (an intraclass correlation of 0.2, an effect size of 0.1, and 50
participants per experiment), around 5.135.716.33 percent of experiments in which both
product-moment correlations were significant resulted in the correlations having opposite
signs. As the intraclass correlation increased, the rates of this effect decreased rapidly.

To assess how often these two issues could occur in practice, we repeated the above
analyses but with the UKB. From the UKB, we extracted the “Cognitive” variables
using the FMRIB UKBiobank Normalisation, Parsing And Cleaning Kit (McCarthy,
2023), restricting analyses to variables with instance 2 and that exhibited one of the
largest (in absolute magnitude) 50 rank correlations (between the cognitive variables
and the average of the two estimates of the volume of the left amygdala), and further to
only those participants that had values for all 50 of those variables (23486 participants).
Each simulation resulted in a rank correlation between the two volume estimates for
the left amygdala and each of the 50 variables (results were comparable with the right
amygdala). For additional details, see Appendix A.5.

Considering differing significance levels, the rates across experiments using the UKB
resembled the rates from experiments with artificial data. In simulated experiments with
50 UKB participants in which at least one correlation was significant, one correlation
was not significant in between 90.790.891.0 and 95.195.295.3 percent of simulations (the
two estimates cover the 50 cognitive variables; Figure 2̃b, left panel). Proportions were
generally lower for variables that were more strongly correlated with the measure of
volume (for illustration, compare the variables that are higher versus lower in the left
panel of Figure 2̃b).

Considering significant correlations with differing signs, the rates across experiments
with the UKB bracketed the rates with artificial data. In experiments simulated with 50
UKB participants, the rates ranged from 1.281.451.64 to 7.648.329.03. For most variables,
increasing the number of participants decreased the proportion of experiments in which
the two correlations exhibited opposite signs, but for some the proportion increased.
Across the 50 variables, 9 had a higher proportion at N=100 than N=50, 2 of which had
non-overlapping 95% equal-tailed intervals (6348: duration to complete numeric path;
400: time to complete round of pairs matching game; see also Figure A3).

3. Discussion

We examined the consistency of subcortical volumes within the UK Biobank (Alfaro-
Almagro et al., 2018), observing that two common methods of estimating the volume of

6



the amygdala, one from FSL and one from FreeSurfer, have poor consistency with each
other. The main concern in this report is that consistency this poor can lead to conflicting
results. Two kinds of conflict were explored: the methods producing correlations that
are on opposite sides of significance thresholds, and the methods producing volumes with
significant correlations that have differing signs. The prevalence of these occurrences was
estimated with artificial data and data from the UKB. Based on the observed rates, we
make the following recommendations.

3.1. Recommendations
3.1.1. When testing for new biomarkers, report relationships with multiple automated

methods (e.g., both FSL and FreeSurfer).
Researchers may have idiosyncratic reasons for selecting a method, particularly when

the choice is viewed as arbitrary. If the choice between methods is arbitrary, then re-
porting the outcome across selections clarifies the fragility or robustness of a result (for a
general discussion, see Steegen et al., 2016). The choice may not always be arbitrary, as
there are metrics along which and study populations for which one method may perform
better (Zhou et al., 2021; Morey et al., 2009; Huizinga et al., 2021). Note that one effect
of low consistency could be a downward bias on the magnitude of estimated correlations
(Section Appendix A.7), and so there may be advantages to not only reporting but also
combining the estimates across methods when predicting health-related outcomes (e.g.,
by averaging, or including both as independent variables in predictive models). Report-
ing estimates from multiple reasonable tools will help move conclusions beyond “there
exists a correlation with the volume of the amygdala as estimated by method M (version
x)” to simply “there exists a correlation with the volume of the amygdala”.

3.1.2. When reviewing or conducting meta-analyses of relationships with amygdala vol-
ume, consider the method that was used to estimate volume.

As mentioned in the Introduction, the amygdala has received substantial attention due
to being predictive of an array of health-related outcomes. As presented in this report,
the volume that is estimated by one automated method may only weakly correspond
to the volume estimated by another, and so it may be misleading to conduct a meta-
analysis without accounting for the algorithms used by the individual studies. In the
UKB, there are differences in the strength of the correlations between the measures of
volume and the cognitive variables; in nearly all of the variables considered in this report,
the magnitude of the correlations involving FreeSurfer’s method were numerically larger
(Figure A5). Larger correlations do not imply higher veracity, but they further indicate
that the methods track aspects of amygdalar anatomy differently.

3.1.3. When replicating or extending research on a relationship that involves the volume
of the amygdala, use the method reported in the original publications.

This recommendation follows standard practice for a replication study. We highlight
it here in consideration of both extension studies that aim to apply a biomarker or
biosignature that includes amygdala volume (such as when testing a putative relationship
in a new population), and also in consideration of the ongoing evolution of methods for
automatically estimating subcortical volumes. Although FSL and FreeSurfer are two of
the most popular methods, others exist (e.g., Akhondi-Asl and Warfield, 2013), including
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newer techniques based on deep-learning approaches (e.g., Billot et al., 2023; for review,
see Singh and Singh, 2021). Newer methods may have better correspondence with manual
segmentation, warranting their use in replication or extension studies. But as this report
shows, two methods can perform well while exhibiting poor consistency with each other.
So when building on prior findings, it remains important to use the methods of those
prior findings, even when they are superseded.

Data and Code Availability
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Appendix A. Supplementary Materials

Appendix A.1. Intraclass Correlation
The intraclass correlation was based on a two-way mixed linear model (McGraw and

Wong, 1996). In the model, the volume 𝑥 for the region of participant 𝑖 as measured by
method 𝑘 was treated as equal to the sum of an intercept, 𝜈, the “true” volume, 𝜆𝑖, a
method bias, 𝑐𝑘, and an error term, 𝜖𝑖𝑘

𝑥𝑖𝑘 = 𝜈 + 𝜆𝑖 + 𝑐𝑘 + 𝜖𝑖𝑘

∑
𝑘

𝑐𝑘 = 0

𝜆𝑖 ∼ 𝑁(0, 𝜎2
𝜆)

𝜖𝑖𝑘 ∼ 𝑁(0, 𝜎2
𝜖 )

Note that the 𝑐𝑘 terms are assumed fixed, with variance given by 𝜎2
𝑐 = ∑𝑘 𝑐2

𝑘/(𝑘 − 1).
An important assumption of this model is that the two methods are expected to have

the same mean-squared error. The model does not include features that would allow for
the errors in the two methods to be correlated (e.g., participants are not distinguished
by characteristics that coincide with the methods performing better or worse).

The consistency version of the intraclass correlation, 𝐼𝐶𝐶(𝐶, 1), and the absolute agree-
ment, 𝐼𝐶𝐶(𝐴, 1) were given as fractions of the variance components

𝐼𝐶𝐶(𝐶, 1) = 𝜎2
𝜆

𝜎2
𝜆 + 𝜎2𝜖

𝐼𝐶𝐶(𝐴, 1) = 𝜎2
𝜆

𝜎2
𝜆 + 𝜎2𝜖 + 𝜎2𝑐

Variance components and associated confidence intervals estimated using the R package
irr (R Core Team, 2023; Gamer et al., 2019), which uses the mean square approach
described by McGraw and Wong (1996).

Appendix A.2. Differences in Average Volumes
Although we primarily focused on the consistency of the methods, we also observed

shifts in the average volumes reported by the two methods (Figure A1). Differences in
averages across methods have been reported previously (Gomez-Ramirez et al., 2022;
Perlaki et al., 2017; Dewey et al., 2010; Huizinga et al., 2021). FSL tends to report
volumes that are larger than those from FreeSurfer for the Accumbens, Amygdala, Hip-
pocampus, and Pallidum, whereas for the Caudate, Putamen, and Thalamus FSL tends
to report values that are smaller than those from FreeSurfer (all 𝑝 < 0.0001 for two-sided
t-test). Across structures, the variability in the difference appears to covary with the
average of the two volume estimates, increasing as the average volume estimate decreases
(Figure A1 b).
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Figure A1: Bland-Altman Plots for Subcortical Volume. Horizontal lines show average difference and
limits of agreement (1.96 standard deviations), with ribbons marking 95% confidence intervals. Panels
correspond to subcortical structures. Left and right structures are plotted together. Shifts in the
average estimate correspond to the central ribbon excluding zero. The color overlay indicates the degree
of overplotting. a) Raw Differences. Note that axes are across panels independently. b) Differences by
Percent Average.
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Appendix A.3. Intraclass Correlations Across All Subcortical Regions

Structure Hemisphere ICC(C,1) ICC(A,1)
Accumbens Left 0.570.580.58 0.050.440.65
Accumbens Right 0.560.570.57 −0.030.380.63
Amygdala Left 0.240.240.25 −0.030.140.29
Amygdala Right 0.210.220.23 −0.050.070.21
Caudate Left 0.850.850.86 0.750.830.88
Caudate Right 0.860.860.87 0.620.820.90
Hippocampus Left 0.690.690.70 0.490.650.74
Hippocampus Right 0.700.700.71 0.360.630.77
Pallidum Left 0.680.680.69 −0.090.410.71
Pallidum Right 0.660.670.67 0.040.510.73
Putamen Left 0.790.790.80 0.540.740.84
Putamen Right 0.820.830.83 0.560.770.87
Thalamus Left 0.820.820.83 −0.080.490.79
Thalamus Right 0.830.830.83 −0.090.510.81

Table A1: Intraclass Correlation for Subcortical Structures. Subscripts indicate 95% confidence intervals.

Appendix A.4. Intraclass Correlations After Residualizing on Potential Confounds
One possible source of low intraclass correlations could be systematic inaccuracies with

certain kinds of participants. For example, one of the two methods could tend to under-
estimate volumes when given brains that have experienced severe atrophy, which would
decrease the agreement of the methods. To assess this, correlations between the amygdala
volumes and the “simple” confounds within the UKB were calculated (Alfaro-Almagro
et al., 2021).

Several of the correlations appeared to be non-zero (Figure A2). However, regressing
these confounds from the estimated amygdala volumes did not improve the intraclass
correlations (Table A2).
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Figure A2: Correlation Between Potential Confounders and Amygdala Volume Measurements. Summary
describes how the the volumes were combined across methods. Summaries were either an average or
a difference (FSL-FreeSurfer). Note that the variable “Head Size” corresponds to a scaling factor, and
that larger values imply smaller brains.
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Structure Hemisphere ICC(C,1) ICC(A,1)
Accumbens Left 0.420.430.44 0.010.300.51
Accumbens Right 0.440.450.45 −0.050.270.51
Amygdala Left 0.070.080.09 −0.010.040.10
Amygdala Right 0.040.050.06 −0.010.010.04
Caudate Left 0.810.810.81 0.680.780.84
Caudate Right 0.820.820.82 0.520.760.86
Hippocampus Left 0.570.580.59 0.360.530.64
Hippocampus Right 0.580.590.59 0.230.500.66
Pallidum Left 0.550.560.57 −0.090.300.59
Pallidum Right 0.540.540.55 −0.010.380.61
Putamen Left 0.680.690.69 0.380.620.75
Putamen Right 0.730.740.74 0.410.660.79
Thalamus Left 0.640.650.65 −0.080.270.60
Thalamus Right 0.640.650.65 −0.090.280.60

Table A2: Intraclass Correlation After Deconfounding. Prior to calculating consistency, volumes were
deconfounded by a version of the “simple” parameter set described by Alfaro-Almagro et al. (2021). For
the list of variables, see Figure A2. Subscripts indicate 95% confidence intervals.
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Appendix A.4.1. Adjusting for ICV
When reporting differences in volume between groups, it is common to adjust for either

head size or cerebral volume (Barnes et al., 2010; Mathalon et al., 1993; Voevodskaya
et al., 2014). Adjusting by intracranial volume as estimated by FreeSurfer did not improve
the intraclass correlations (Table A3).

Structure Hemisphere ICC(C,1) ICC(A,1)
Accumbens Left 0.880.880.88 0.400.810.91
Accumbens Right 0.900.900.90 0.230.810.92
Amygdala Left 0.270.280.29 −0.030.170.34
Amygdala Right 0.200.210.22 −0.050.070.20
Caudate Left 0.790.800.80 0.670.770.83
Caudate Right 0.810.810.81 0.520.750.85
Hippocampus Left 0.630.630.64 0.420.580.69
Hippocampus Right 0.630.640.64 0.280.550.71
Pallidum Left 0.630.630.64 −0.090.360.66
Pallidum Right 0.600.610.61 0.020.450.68
Putamen Left 0.720.720.72 0.440.660.78
Putamen Right 0.760.760.76 0.460.700.81
Thalamus Left 0.750.750.76 −0.090.390.72
Thalamus Right 0.750.760.76 −0.090.400.73

Table A3: Consistency of Volumes when Adjusting by Intracranial Volume. Adjustments were done by
residualizing with respect to ICV. Subscripts indicate 95% confidence intervals.

Appendix A.5. Simulated Experiments
To simulate hypothetical data, the models described in the previous sections were used.

Sample sizes were set between 10 to 100 in steps of 10. At each combination of parameters,
experiments were repeated 1,000,000 times. Simulated experiments with the UKB data
were performed analogously to those with hypothetical data (UKB samples were taken
with replacement).

In all simulations with artificial data, several parameters described in Section Appendix
A.1 would not influence results after setting an intraclass and interclass correlation and
so were set to arbitrary values: 𝜈 = 0, 𝜎𝛿 = 1, and 𝜎𝑐 = 0. The remaining parameter
𝜎𝜆 was set to a value that was estimated from the full UKB with a linear mixed-effects
model that was estimated by restricted maximum likelihood as implemented by lme4
(Bates et al., 2015): 0.019.

Across repetitions, the rates of each effect were estimated by analytic Bayesian methods
(binomial likelihood with Beta prior whose shape parameters were set to 1/2). For the
effect of “Different Significance”, the posterior was based on the number of simulations
in which one correlation exhibited a 𝑝-value less than 0.05 and the other was above
0.05 (successes among relevant simulations) and the number of simulations in which at
least one 𝑝-value was below 0.05 (total relevant simulations). The effect of “Different
Direction” was calculated similarly, but used simulations in which both correlations had
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opposite magnitudes out of those in which both were significant. In the main text,
ranges of uncertainty refer to 95% equal-tailed intervals and proportions refer to posterior
medians.

The 95% equal-tailed interval of the posteriors for the simulations are shown in Figure
A3.
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Figure A3: Effects of Low Measurement Consistency on the UKB in Left and Right Hemispheres.
Ribbons span 95% equal-tailed interval estimated from simulated experiments. See also Figure 2, where
the medians are represented with color.
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Appendix A.6. Differing Significance Minimally Affected by Increasing Sample Sizes
When ICC is Low

As described in the main text, when intraclass correlations were low, increasing the
sample size affected the rates of differing significance only minimally Figure 2. This lack
of influence can be understood by inspecting the distribution of simulated correlations
Figure A4. When the intraclass correlation is low Figure A4, the significance of one
correlation is nearly uninformative about the significance of the other (that is, the distri-
butions of the two correlations are nearly circular). Moreover, the power to detect small
correlations with even 100 participants is low, and so the power for two tests is very low.
But when the intraclass correlation is higher Figure A4, the two correlations cluster,
which improves the power of a second test conditioning on one test being significant.
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Figure A4: Correlations from Simulations with Artificial Data. Points correspond to simulations and
are colored based on statistical significance. The figure shows only a subset of the simulated sample sizes
(rows), only the smallest and largest intraclass correlations (columns), and only simulations in which
the true effect size (correlation) was 0.1.

Appendix A.7. Measurement Error and Reduced Correlation Magnitude
Using the model from Appendix A.1, we can build a measurement noise model (e.g.,

Frost and Thompson, 2000). Call the final target for which we hope to find a relationship
with the volume 𝑦. The relationship between that value and the volume was given by an
ordinary linear regression with error 𝛿.

20



𝑦𝑖 = 𝛽0 + 𝛽1𝜆𝑖 + 𝛿𝑖
𝛿𝑖 ∼ 𝑁(0, 𝜎2

𝛿)

But since we do not know 𝜆, the volumes estimated by the tools are used instead,
changing the regression coefficient as follows

𝑦𝑖 = 𝛽0 + ̃𝛽1𝑥𝑖 + 𝛿𝑖

Dilution occurs because the coefficient ̃𝛽1 estimated in this model tends to be closer to
zero, decreased by a factor related to the intraclass correlation (Frost and Thompson,
2000).

̃𝛽1 = 𝛽1
𝜎2

𝜆
𝜎2

𝜆 + 𝜎2𝜖

Correspondingly, the desired correlation, 𝜌 = 𝑐𝑜𝑟(𝑦, 𝜆), will also be biased.

𝛽1 = 𝜌 𝜎𝛿
𝜎𝜆

̃𝛽1 = ̃𝜌 𝜎𝛿
𝑠𝑑(𝑥)

= ̃𝜌 𝜎𝛿

√𝜎2𝜖 + 𝜎2
𝜆

⟹

𝜌 𝜎𝛿
𝜎𝜆

= ̃𝜌 𝜎𝛿

√𝜎2𝜖 + 𝜎2
𝜆

𝜎2
𝜆 + 𝜎2

𝜖
𝜎2

𝜆

⟹

𝜌 = ̃𝜌
√𝜎2𝜖 + 𝜎2

𝜆
𝜎𝜆

Appendix A.8. Correlations Between Volumes of the Amygdala and Cognitive Variables
As described in the main text, a set of 50 “cognitive” variables from the UKB was

selected for each hemisphere. Selection was based on the rank correlation between the
variable and the average (across methods) amygdalar volume. The correlations between
those variables and the original volume estimates are shown in Figure A5. For both hemi-
spheres, the magnitude of the correlations with the volumes as reported by FreeSurfer
tended to be higher than those reported by FSL.
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Figure A5: Correlations Between Cognitive Factors and Estimated Volumes of the Left and Right
Amygdala. Variables are ordered by decreasing rank correlation using average of left hemisphere volume
estimates. Note that variables were selected based on the magnitude of their correlation with amygdalar
volumes, which differed across hemispheres, and so the variables in left and right panels differ. Error
bars span 95% confidence intervals (bootstrapped with 1000 samples).
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